flashinfer.sampling.sampling_from_probs#
- flashinfer.sampling.sampling_from_probs(probs: torch.Tensor, uniform_samples: torch.Tensor, deterministic: bool = True, check_nan: bool = False) torch.Tensor #
Fused GPU kernel for category sampling from probabilities.
- Parameters:
probs (torch.Tensor) – Probabilities, shape
(batch_size, num_classes)
.uniform_samples (torch.Tensor) – The uniform samples used as needle for sampling, shape
(batch_size,)
. Expected to be uniformly distributed in[0, 1)
.deterministic (bool) – Whether to use deterministic kernel implementation, default is
True
.check_nan (bool) – Whether to check nan in
probs
, default isFalse
.
- Returns:
samples – Sampled categories, shape (batch_size,).
- Return type:
torch.Tensor
Examples
>>> import torch >>> import flashinfer >>> torch.manual_seed(42) >>> batch_size = 4 >>> vocab_size = 5 >>> pre_norm_prob = torch.rand(batch_size, vocab_size).to(0) >>> norm_prob = pre_norm_prob / pre_norm_prob.sum(dim=-1, keepdim=True) >>> norm_prob tensor([[0.2499, 0.2592, 0.1085, 0.2718, 0.1106], [0.2205, 0.0942, 0.2912, 0.3452, 0.0489], [0.2522, 0.1602, 0.2346, 0.1532, 0.2000], [0.1543, 0.3182, 0.2062, 0.0958, 0.2255]], device='cuda:0') >>> uniform_samples = torch.rand(batch_size).to(0) >>> samples = flashinfer.sampling.sampling_from_probs(norm_prob, uniform_samples) >>> samples tensor([1, 2, 1, 4], device='cuda:0', dtype=torch.int32)
Note
This function expects float32 inputs, and the output is int32.